首页> 外文OA文献 >Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Four Dimensions
【2h】

Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Four Dimensions

机译:四维变形晶体管和高自旋共形(超)代数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Massless conformal scalar field in d=4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2,2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2,2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS_5. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS_5 is simply the enveloping algebra of SU(2,2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS_5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS_5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2,2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS_5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in AdS_4 where the 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.
机译:d = 4中的无质量保形标量场对应于保形群SU(2,2)的最小unit表示(minrep),该组允许描述描述任意螺旋的无质量场的一参数变形家族。 minrep及其变形是通过对SU(2,2)作为arSiv:0908.3624中的一个拟保形群的非线性实现进行量化而获得的。我们表明,这些(不可约表示的SU(2,2)的生成器可以写为变形扭转振荡的双线性,在Lorentz群下进行非线性变换,并将其应用于定义和研究AdS_5中的高自旋代数和超代数。 AdS_5中Fradkin-Vasiliev类型的高自旋(HS)代数只是SU(2,2)的包络代数,该代数由消灭minrep的双面理想(约瑟夫理想)所引用。我们表明,对于minrep的拟保形实现,约瑟夫理想完全消失,其包络代数直接导致AdS_5中的HS代数。此外,minrep变形的包络代数在AdS_5中定义了一个HS代数的参数族,约瑟夫理想的某些4d协变形对于它们完全消失。这些结果扩展到超共形代数SU(2,2 | N),我们发现一个HS超代数的一个参数族是最小unit超多重性及其变形的包络代数。我们的结果表明,AdS_5中存在一系列(超对称)HS理论,这些理论对自由(超)保形场理论(CFT)或相互作用但可整合的(超对称)CFT在4d中具有双重作用。我们还讨论了AdS_4中的相应图片,其中3d保形群Sp(4,R)仅允许两个无质量表示(minreps),即标量和自旋单峰。

著录项

  • 作者

    Govil, K.; Gunaydin, M.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号